PhD Course in

EARTH SCIENCE, FLUID DYNAMICS AND MATHEMATICS.
INTERACTIONS AND METHODS

Courses and Syllabi
2020-21
Course: ICE SHEETS AND GLACIERS IN THE CLIMATE SYSTEM
SSD: GEO/02
15+15 hours, 2+2 ECTS
Lecturer/s: A. Camerlenghi (OGS), R. Colucci (ISMAR, CNR), L. De Santis (OGS), E. Forte (Univ. Trieste), R. Francese (OGS), R. G. Lucchi (OGS), F. Pettenati (OGS), M. Rebesco (OGS), F. Colleoni (CMCC), B. Stenni (Univ. Ca’ Foscari)

Aims: The course aims to give a current review of modern research into processes and dynamics of the global cryosphere (Glaciers, ice sheets, permafrost) and their connections with climate.

Syllabus:
Lectures will cover arguments linked to glacial dynamics both in the temperate (e.g. the European Alps glaciers) and the cold domains (e.g. Polar cryosphere). A considerable insight into the response of glaciers to climate change and the challenges of predicting future directions in glacier mass balance and dynamics, represents also part of the course. A specific focus is also given to periglacial environments and permafrost. The course will focus both on polar and alpine landscapes, introducing general concepts in regards to glacial and periglacial geomorphology, meteorological and climatological control on the distribution of the cryosphere, ice coring and paleoclimate, ice sheets modelling, polar marine depositional system, and geophysical methods used on ice.

Teaching methods: lectures
Assessment methods: oral/written exam
Other information: the course is delivered in English; it consists of two parts: part 1) Geophysical-geological approach and case studies, resp. Dr. Renata G. Lucchi; part 2) Ice sheets and glaciers in the climate system: Data-model inter-comparison and case studies, resp. Dr. Florence Colleoni.
Course: THE KARST PROCESS: GENESIS, EVOLUTION AND IMPACT IN THE HUMAN LIFE
SSD: GEO/05
30 hours, 4 ECTS
Lecturer: C. Calligaris

Aims: introduce students to the world of karst through the study of geomorphology and hydrogeology

Syllabus:

1.- The Karst process. Definitions. The karst process in the evaporites, in halite, in gypsum, in siliceous rocks, in carbonate rocks. The role of CO$_2$ in the karst process. Temperature, pressure, mixing.
2.- Karst geomorphology: epigean, marine and hypogean karst features. Sinkholes vs dolines, poljes, caves, springs, mixed origin karst forms. Karst, hyperkarst, parakarst areas in the world.
3.- Karst landscapes and geosystems. The importance of speleology: history, evolution and scientific research.
4.- Modern speleogenesis: history and factors influencing speleogenesis: geographical, geological, physical or hydraulic, climatic and biological. Evolution of karst systems. The role of condensation. The role of sea and thermal waters.
5.- Sedimentation, erosion and paragenesis. Chemical deposits and spelothems in caves.
6.- Structure and morphology of karst systems. Adaptations and changes over time.
7.- Cave explorations, mapping and monitoring.
8.- Karst aquifers. Monitoring karst aquifers. Natural and artificial tracers.
9.- Show caves, human impact, hazard and vulnerability in karst.

Teaching methods: lectures/exercises/surveys
Assessment methods: oral examination
Other information: the course is delivered in English
Aims: To introduce the major theoretical concepts about redox processes inside the Earth and the available thermodynamic and experimental tools to constrain oxygen fugacity (fO_2) of the different Earth’s reservoirs. At the end of the lectures, students will have the possibility to discuss their own work with the lecturers.

Syllabus:

- Oxygen fugacity of rocks and magmas: geological and thermodynamic concepts
- The meaning of fO_2 in thermodynamic modelling of petrogenetic processes
- The control and monitoring of fO_2 in experimental petrology

Teaching methods: lectures/hands-on activity
Assessment methods: -
Other information: the course is delivered in English
Course: REDOX-SENSITIVE ELEMENTS AND STATE-OF-THE-ART ANALYTICAL TECHNIQUES
SSD: GEO/07
8 hours, 1 ECTS
Lecturer/s: C. McCammon, A. Berry, J. Prytulak

Aims: To present and discuss the state-of-the-art techniques used to determine the oxidation state of multi-valence elements (e.g., Fe and S) in minerals, glasses and fluids. To show which are the most suited software for processing data obtained through Mössbauer and X-ray Absorption spectroscopy. At the end of the lectures, students will have the possibility to discuss their own work with the lecturers.

Syllabus:

- The oxidation state of Fe through Mössbauer spectroscopy
- The oxidation state of Fe through XANES
- The oxidation state of S in the Earth’s interior
- Stable isotope redox proxies

Teaching methods: lectures/hands-on activity
Assessment methods: -
Other information: the course is delivered in English
Course: THE REDOX STATES OF EARTH’S RESERVOIRS AND THEIR RELEVANCE FOR THE CYCLE OF ELEMENTS AND ATMOSPHERE/BIOSPHERE EVOLUTION
SSD: GEO/07
16 hours, 2 ECTS

Aims: To provide a multidisciplinary outlook on the meaning of oxygen fugacity in Earth’s reservoirs and processes. To overview the state-of-the-art knowledge on the oxidation state of the different reservoirs in the Earth, and what is the expected speciation of redox-sensitive elements in these reservoirs. At the end of the lectures, students will have the possibility to discuss their own work with the lecturers.

Syllabus:

- Volcanic gas release to the atmosphere
- How is and was the biosphere affected by magmatic processes
- The role of fO2 and S in magmas and volcanic degassing and the links to mass extinction events
- The role of geodynamic processes in the oxidation state of magmas
- Redox processes in magmas and the formation of ore deposits
- Redox processes during mantle melting and mantle metasomatism
- Redox processes above subducting slabs
- Oxidation state of the Earth from the core to the upper mantle
- Redox processes in the Moon and other planetary bodies (Vesta, Mars, etc)

Teaching methods: lectures/hands-on activity
Assessment methods: -
Other information: The course is delivered in English
Course: PHYSICS OF THE EARTH FOR GEOHAZARDS
SSD: GEO/10
24 hours, 3 ECTS
Lecturer/s: A. Aoudia

Aims: give a basic understanding that underlies the physics of a deforming solid-Earth and related geohazards before pursuing advanced computational models in the second semester

Syllabus:

- Introduction to the Geophysical Continua
- From the Atomic scale to the Continuum
- Brief introduction to basic continuum mechanics
- Geological deformation
- Global Seismology and Earth Structure
- Mantle dynamics and Earth boundary layers
- Lithospheric deformation: continuous and discontinuous deformation
- Rheology of the Earth
- Continental Tectonics
- Kinematics and dynamics of the Active Deformation
- Monitoring and observational foundations of earthquake and volcanic hazards
- Secondary hazards: Tsunami and landslides
- Communicating Natural Hazards

Teaching methods: lectures/exercises/reading sessions
Assessment methods: oral examination
Other information: the course is delivered in English
Course: MECHANICS OF EARTHQUAKES AND TECTONOPHYSICS
SSD: GEO/10
24 hours, 3 ECTS
Lecturer/s: A. Aoudia

Aims: introduce students to the mechanics of earthquakes and tectonophysics

Syllabus:

Brittle deformation
Macroscopic failure criteria: faulting, fracture, friction. Macroscopic strength
Fracture energies. Pore fluid effects on fracture. Brittle-plastic transition
Friction and earthquakes
Theoretical concepts: adhesion theory, elastic contact theory, other frictional interactions. Experimental observations of friction. Physics of faults: Stick-slip and stable sliding rate and state variable friction laws, frictional stability regimes, dynamics of stick-slip
Earthquake Mechanics
Viscoelasticity
Stress relaxation and creep experiments. Elastic (solid-like) response. Viscous (liquid-like) response
Active deformation
Tools and techniques: GPS, DinSAR, Seismology, direct observations. Tectonic geodesy and GPS seismology
Velocity field. Models of active deformation: distributed vs. localized. Kinematics and dynamics of the deformation.
Strength and rheology of the lithosphere. Mechanics of the earthquake cycle inclusive of transient deformation

Teaching methods: lectures/exercises
Assessment methods: written/oral examination
Other information: the course is delivered in English
Course: THEORETICAL SEISMOLOGY
SSD: GEO/10
24 hours, 3 ECTS
Lecturer/s: F. Romanelli

Aims: introduce students to the theoretical seismology

Syllabus:

Part I Seismic sources
1. Faulting. Rupture process. Faults and their geometry. Strike, dip, rake and slip
2. Brittle deformation and stresses. Tensile cracking. Shear fracture and Coulomb criterion
3. Frictional sliding. Byerlee’s law. Stresses and faulting. Stress cycle & Stick slip
5. Faults and body forces. Equivalent body forces. Moment density tensor. Shear Dislocation Far source condition.

Part II Earthquakes and their measurement

Part III Tsunami Physics and Hazard
17. Tsunami measurements

Teaching methods: lectures/exercises
Assessment methods: written/oral examination
Other information: the course is delivered in English
Course: WAVE PHYSICS
SSD: GEO/10
24 hours, 3 ECTS
Lecturer/s: F. Romanelli

Aims: introduce students to wave phenomena

Syllabus:

Part I Fundamentals of vibrations and waves
1. **Introduction to the course:** what is a wave?
4. **The wave equation** Transverse waves on a string. Sound waves.
6. **Vibration in lattices** Brillouin zone. Modes of monoatomic lattices. Phonons
 - **Wave propagation** Huygens and Fermat principles. Reflection and refraction, Snell’s law.

Part II Waves in solids
10. **Surface waves and Dispersion** SH waves in plates.
11. **Surface waves in layered media** Surface waves in layered halfspaces. Love waves. Rayleigh waves.
12. **Free modes of the Earth** 2D: wave equation in cylindrical coordinates; Bessel functions. Free modes of a membrane. 3D: wave equation in spherical coordinates; Spherical harmonics. Torsional modes; Spheroidal modes.
 - **Tutorial: Fourier and other wave phenomena** Complex sound waves; Fourier synthesis & analysis; Vibrating string; Waveguides

Teaching methods: lectures/exercises
Assessment methods: written/oral examination
Other information: the course is delivered in English
Course: SPACE GEODESY AND InSAR
SSD: GEO/10
24 hours, 3 ECTS
Lecturer/s: A Borghi

Aims: introduce students to the space geodesy

Syllabus:
1. Fundamentals of Geodesy
 • Definition of the Earth gravity field.
 • Reference surfaces: geoid and ellipsoid.
2. Fundamentals of Space Geodesy
 • Definition of Space Geodesy
 • Definition of global and local coordinate systems
 • Description of the satellite motions
 • Forces acting on the satellites
3. GPS observables
 • Pseudo ranges
 • Carrier phases
 • RINEX format
4. Errors in the GPS observables
 • ionosphere
 • troposphere
 • multipath
 • phase center variation
5. Mathematical model of GPS observables
 • relative and absolute positioning
 • linear combination of observables
6. Methods of processing GPS data
 • Commercial software
 • Scientific software
7. GPS Time series analysis
 • Deterministic model
 • Stochastic model
8. Kinematic applications
 • DGPS
 • NRTK
9. SAR
 • Definition of RADAR
 • Definition of SAR
10. Interferometry
 • Definition of InSAR
 • phase unwrapping
 • applications
11. DinSAR
 • Definition of DinSAR
 • applications
12. GPS and InSAR geophysical applications
 • case studies

Teaching methods: lectures/exercises
Assessment methods: written/oral examination
Other information: the course is delivered in English
Course: EARTH MONITORING WITH SPACE GEODETIC INTERFEROMETRY
SSD: GEO/10
16 hours, 2 ECTS
Lecturer/s: C. Braitenberg

Aims: The Sentinel 1 satellite offers enhanced technology for observing the static and dynamic earth surface. The course aims at achieving a review on the applications in which the observations can be used, discuss the breakthrough achievements and limiting factors compared to other competing methods.

Syllabus:

1) The Sentinel 1 satellite. Orbit and coverage, revisit time.
2) Sentinel 1 compared to previous satellites. Spatial resolution, time coverage, revisit time.
3) Interferograms construction, the role of a good topography model.
4) The problem of atmospheric noise on the observations. Atmospheric noise correlation with topography
5) Phase unwrapping techniques
6) Time series construction with SBAS
7) Time series construction with PS
8) Common Scene Stacking (CSS) method
9) Coseismic deformation
10) Postseismic deformation
11) Interseismic deformation
12) Post-seismic relaxation mechanisms: semi-analytic models of afterslip, poroelastic rebound and viscoelastic flow

Teaching methods: lectures/reading sessions
Assessment methods: Exposition in the reading sessions
Other information: the course is delivered in English. Basic knowledge in Remote sensing and INAR is required.
Course: APPLIED SEISMOLOGY
SSD: GEO/10
24 hours, 3 ECTS
Lecturer/s: S. Parolai

Aims: introduce students to applied engineering seismology

Syllabus:

6. Site effect estimation: indirect methods. Active source methods. MASW, CASW, SASW.
9. Earthquake early warning systems.

Teaching methods: lectures/exercises
Assessment methods: written/oral examination
Other information: the course is delivered in English
Course: PHYSICS OF VOLCANOES
SSD: GEO/10
24 hours, 3 ECTS
Lecturer/s: E. Rivalta

Aims: introduce students to the physics of volcanoes

Syllabus:

Teaching methods: lectures/exercises
Assessment methods: written/oral examination
Other information: the course is delivered in English
Course: ADVANCED SEISMIC PROCESSING
SSD: GEO/11
30 hours, 4 ECTS
Lecturer/s: M. Pipan, F. Poletto, G. Boehm

Aims: introduce students to advanced seismic processing

Syllabus:

Part 1: Seismic migration
Migration algorithms: finite difference, Kirchhoff, frequency domain, Stolt
Migration velocity analysis and Common-Image Gathers
Dip Move-Out and migration pre- and post-stack
Migration in time and depth domain
Migration in 2D and 3D

Part 2: Seismic tomography
Inversion algorithms and ambiguity
Tomography using irregular and staggered grids
Time-lapse tomography
Joint traveltime inversion of different wave types
Joint traveltime inversion of active and passive seismic data

Part 3: Seismic interferometry and borehole geophysics
Borehole geophysics and Vertical Seismic Profiles
Seismic-While-Drilling and geothermal applications
Seismic interferometry by correlation and deconvolution
Far-field and near-field analysis
Emission pattern of seismic sources

Teaching methods: lectures
Assessment methods: written/oral examination
Other information: the course is delivered in English
Course: THERMODYNAMICS AND PHYSICS OF THE ATMOSPHERE
SSD: GEO/12
60 hours, 7 ECTS
Lecturer/s: A. Tompkins

Aims: introduce students to thermodynamics and physics of the atmosphere

Syllabus:

1. Dry Thermodynamics

2. Moist Thermodynamics
 Saturation Other measures of water vapour Water variables in the liquid and ice state Specific heat of moist air Ways of reaching saturation

3. Atmospheric Convection
 Introducing dynamics, Buoyancy force, Introduction to convection, Atmospheric stability, Convection in the atmospheric boundary Layer, Single cell deep convection, Key convective parameters, Convective triggering, Mid-tropospheric convection, Trigger Temperature, Updraught structure and entrainment, Downdraughts, Organised deep convection

4. Cloud Physics
 Cloud drop formation, The energy barrier and Kelvin’s equation, Diffusional growth, Terminal velocity of particles, Collision and coalescence, Ice crystal nucleation, Ice saturation, Ice nucleation mechanisms, Homogenous nucleation from the liquid phase, Ice crystal growth, Competition between ice nucleation mechanisms, Aggregation, Riming, Ice particle fall-speeds, Ice multiplication

5. Radiation
 Definitions of the radiative field, Energy balance models of the atmosphere, Sun and Earth Geometry, Radiation interactions with a slab, Direct Radiation, Scattering from other directions, Absorption by atmospheric gases, Scattering

Teaching methods: lectures/exercises
Assessment methods: written/oral examination
Other information: the course is delivered in English
Course: ATMOSPHERIC DYNAMICS
SSD: GEO/12
24 hours, 3 ECTS
Lecturer/s: F. Kucharski

Aims: introduce students to the main topics of the atmospheric dynamic

Syllabus:

Lecture 1 Vorticity equation for synoptic-scale motion; potential; vorticity conservation
Lecture 2 Quasi-geostrophic motion; Thermo-Hydrodynamic equations in pressure coordinates
Lecture 3 Rossby waves; free Rossby waves; forced Rossby waves
Lecture 4 Baroclinic instability; two-layer model
Lecture 5 Equatorial waves; Rossby-gravity waves; Kelvin waves
Lecture 6 ENSO atmosphere and ocean feedback mechanisms; Gill model; Reduced Gravity Model
Lecture 7 Boundary Layer Processes; turbulent fluxes; Ekman pumping
Lecture 8 The General Circulation; Hadley Cell; Ferrell Cell
Lecture 9 Tropical zonal and meridional circulations; Walker circulation; Sverdrup balance
Lecture 10 Energetics of the General Circulation; Lorenz’ energy cycle
Lecture 11 and 12 Analysis of climate Variability; EOF analysis, PCA analysis

Teaching methods: lectures/exercises
Assessment methods: written/oral examination
Other information: the course is delivered in English
Course: PHYSICS AND DYNAMICS OF THE OCEAN
SSD: GEO/12
60 hours, 7 ECTS
Lecturer/s: R. Farneti, A. Crise, M. Gacic

Aims: introduce students to the main topics of the physics of the ocean

Syllabus:

1. Physics of the Oceans: Overview
 - Lecture 1 Introduction physical oceanography – definition and aims;
 World ocean geography; temporal and spatial variability of motion in the ocean. Temperature, salinity and density; Temperature and salinity, definitions; geographic distribution (spatial and temporal characteristics); density; measurements and calculations; potential temperature; The oceanic heat budget; Heat budget terms; direct and indirect calculations of heat fluxes; geographic distribution of terms; meridional heat transport; global warming.
 - Lecture 2 The freshwater budget; Freshwater sources and sinks for the world ocean; geographic distribution of terms; global warming and freshwater budget; estuarine and anti-estuarine circulation.
 Geostrophic currents Geostrophic approximation; hydrostatic equilibrium; thermal wind relation; barotropic and baroclinic flow; interior flow and boundary layers; limitations of the geostrophic approximation.
 Wind influence and bottom friction Ekman layer and Ekman balance; Ekman mass transport; inertial oscillations; bottom boundary layer.
 - Lecture 3 Vorticity in the ocean; Definition of vorticity; conservation of vorticity; vorticity and friction; Ekman pumping. World ocean circulation and global processes Global conveyor belt; western intensification; coastal and open ocean upwelling.
 - Lecture 4 Waves in the ocean; Rossby waves; Kelvin waves (equatorial and coastal); baroclinic and barotropic wave solutions. Equatorial dynamics and climate variability El Nino and teleconnections; Observing and predicting El Nino.

Suggested readings:
- Matthias Tomczak, 2002: An Introduction to Physical Oceanography, Flinders University of South Australia in Adelaide, 13 lectures.
(http://www.mt-oceanography.info/IntroOc/newstart.html)

2. Physics of the Oceans: Instrumentation
 - Lecture 1 Introduction. Classical methods (Research vessels, XBT, CTD, Rosette, current meters, tide gauges, etc.)
 - Lecture 2 Autonomous systems (moored buoys, surface drifters, sub-surface floats and profilers, gliders, AUVs, etc.)
 - Lecture 3 Remote sensing: ADCP, acoustic tomography, HF coastal radar
 - Lecture 4 Remote sensing from satellites (Sea surface temperature & ocean color, altimetry, scatterometry, SAR)

Suggested readings:
- Chapter 1. Data Acquisition and Recording
Data Analysis Methods in Physical Oceanography
W. J. Emery & R. E. Thomson, Elsevier
- Oceanographic Instrumentation
An Introduction to Physical Oceanography (M. Tomczak)
http://www.mt-oceanography.info/IntroOc/lecture13.html
- Underwater gliders for ocean research

3. Dynamics of the Ocean
 1. Fundamentals: Geostrophy, Thermal Wind and Hydrostasy
 2. Ekman Dynamics: the introduction to Friction I
 3. Ekman Dynamics: the introduction to Friction II
 4. Wind-Driven Gyres I: Sverdrup Flow
 5. Wind-Driven Gyres II: Stommel Model
 6. Wind-Driven Gyres III: Munk Model
 7. Wind-Driven Gyres III: Topographic Effects
 8. Thermocline Dynamics
 9. Meridional Overturning Circulation: Buoyancy-driven Overturning
 10. Meridional Overturning Circulation: Wind-driven Overturning
 11. Introduction to the role of the ocean in the Global Carbon Cycle (GCC)
 12. The ocean dynamics and GCC: principles and key processes
 13. Ocean transport processes of passive tracers
 14. Mesoscale and upper layer dynamics and effects on GCC

Teaching methods: lectures/exercises
Assessment methods: written/oral examination
Other information: the course is delivered in English
Course: OCEAN DYNAMICS
SSD: GEO/12
24 hours, 3 ECTS
Lecturer/s: R. Farneti, A. Crise

Aims: introduce students to the ocean dynamics

Syllabus:

- Fundamentals: Geostrophy, Thermal Wind and Hydrostasy.
- Ekman Dynamics: the introduction of friction
- Wind-Driven Gyres: The Stommel model
- Wind-Driven Gyres: The Munk model
- Wind-Driven Gyres: Topographic effects
- Thermocline Dynamics
- Meridional Overturning Circulation: Buoyancy driven Overturning
- Meridional Overturning Circulation: Wind-driven Overturning
- The role of the ocean in the global carbon cycle
- Passive tracer transport fundamentals
- The carbon flux and the horizontal ocean
- The carbon flux and the vertical ocean

Teaching methods: lectures/exercises
Assessment methods: written/oral examination
Other information: the course is delivered in English
Course: EARTH SYSTEM MODELLING
SSD: GEO/12
60 hours, 7 ECTS
Lecturer/s: A. Tompkins

Aims: introduce students to climate modelling

Syllabus:

• Energy Balance models
 1.1 Introduction
 1.2 Zero dimension energy balance model
 1.3 Climate system perturbations
 1.3.1 Natural climate variability
 1.3.2 Anthropogenic climate variability
 1.4 Climate Sensitivity
 1.5 Fast climate feedbacks
 1.5.1 Water vapour feedback
 1.5.2 Lapse rate feedback
 1.5.3 Cloud feedback
 1.5.4 Ice albedo feedbacks
 1.5.4.1 Land surface feedbacks

• Atmospheric models
 2.1 Introduction
 2.2 Spatial discretization
 2.3 Physical processes in models
 2.3.1 Numerical weather prediction models
 2.3.2 Seasonal climate prediction models
 2.3.3 Climate and earth system models
 2.4 Sub-grid scale processes in the atmosphere
 2.4.1 Parameterization concept
 2.4.2 Turbulence processes
 2.4.3 Convection
 2.4.4 Cloud microphysics
 2.4.5 Cloud macrophysics

• Earth System Models
 3.1 Ocean models
 3.1.1 Mixed layer ocean model
 3.1.2 3D ocean model
 3.1.2.1 Horizontal grids
 3.1.2.2 Subgrid scale parameterizations
 3.1.3 Sea ice
 3.1.4 Glaciers
 3.1.5 Snow cover
 3.2 Land surface and vegetation
 3.2.1 Land surface properties
 3.2.2 Soil Moisture and hydrology
 3.2.3 Tiles approach
 3.2.4 Interactive vegetation
 3.3 Carbon and nitrogen cycle
 3.4 Aerosols and chemistry

• IPCC
 4.1 IPCC Overview
 4.2 CMIP
 4.3 Representative Concentration Pathways
 4.4 Climate projections
 4.4.1 Temperature
 4.4.2 Precipitation
 4.4.3 Sea ice
 4.4.4 Sea level
 4.4.5 Ocean acidification
 4.4.6 Ocean circulation
 4.5 Uncertainty

• Exercises
 A.1 Energy Balance Models
 A.2 ESM - fast processes
 A.2.1 Parameterization
 A.3 ESM - fast processes

Teaching methods: lectures/exercises
Assessment methods: written/oral examination
Other information: the course is delivered in English
Course: EARTH SYSTEM THERMODYNAMICS
SSD: GEO/12
24 hours, 3 ECTS
Lecturer/s: F. Kucharski

Aims: introduce students to earth system thermodynamics

Syllabus:
- Thermodynamic state and state variables; extensive, intensive variables; field quantities; energy, first law; Gibbs equation
- Thermodynamics potentials; second law; thermodynamics equilibrium; multicomponent systems; hydrostatic equation
- Application to dry air; ideal gas law; Daltons law; partial pressures; entropy of mixing; dependency of internal energy of Temperature; Potential Temperature; entropy of dry air; specific heat capacities
- Atmospheric convection; stability; Brunt-Vaisala frequency; lapse rate; dry adiabatic lapse rate
- Moist atmospheric thermodynamics; Virtual Temperature; specific heat of moist air; Clausius Claperon Equation; evaporation parameterization; ways to saturation
- Moist stability; moist enthalpy, moist entropy; equivalent potential temperature; moist static stability; moist adiabate
- Some useful energy quantities; dry static energy; moist static energy; CAPE, CIN, Exergy

Teaching methods: lectures/exercises
Assessment methods: written/oral examination
Other information: the course is delivered in English
Course: Fundamental Fluid Mechanics
SSD: ICAR/01
24 hours, 3 ECTS
Lecturer/s: V. Armenio

Aims: provide students with the fundamentals of the mechanics of fluids and knowledge of basic phenomena that characterize the geophysical scales.

Syllabus:

1) Introduction to fluid dynamics
 a. fluid properties
 b. the laws of thermodynamics
 c. Molecular transport phenomena
 d. Stability of a column of fluid
 e. Potential Temperature and potential density

2) Kinematics
 a. Eulerian and Lagrangian approach
 b. flow lines, acceleration of a fluid element
 c. Relative motion between two points: The deformation rate and rotation tensors
 d. Reynolds Transport Theorem

3) Conservation laws
 a. conservation of mass
 b. conservation of momentum
 c. constitutive laws
 d. Navier-Stokes equations
 e. non-inertial reference systems: The Coriolis force
 f. Bernoulli’s Principle
 g. the Boussinesq approximation for flows with density variation
 h. boundary conditions

4) Dynamics of vorticity
 a. Kelvin theorem
 b. of Helmholtz theorem
 c. vorticity equation in inertial and non-inertial reference system
 d. Biot-Savart law

5) Dimensional analysis
 a. nondimensional forms of conservation laws
 b. theorem P Buckingham
 c. the laboratory tests

6) The boundary layer theory
 a. definitions
 b. analytical solution for flat plate
 c. boundary layer separation
 d. notes to flow around bluff bodies

Teaching methods: lectures/exercises
Assessment methods: oral/written examination
Other information: the course is delivered in English
Course: Computational Fluid Dynamics
SSD: ICAR 01
24 hours, 3 ECTS
Lecturer/s: V. Armenio

Aims: to provide students to build up an algorithm and a computer code for the numerical solution of the Navier-Stokes Equations

Syllabus: Concept of consistence and stability of a numerical scheme, finite differences and finite volume methods;
Numerical solution of the advection-diffusion equation using different time schemes and spatial discretization;
Iterative methods for the Poisson equation: Jacobi, Gauss-Seidel and SOR
Fractional method for the time integration of the incompressible NSE
Consistency of the BCs in the fractional method
Development of the computer code and application to a literature case

Teaching methods: lectures/exercises
Assessment methods: homework
Other information: the course is delivered in English
Course: GEOPHYSICAL FLUID DYNAMICS
SSD: ICAR/01, GEO/12
40 hours, 5 ECTS
Lecturers: R. Farneti, S. Salon

Aims: To introduce students to fluid mechanics basic principles and to the main topics of geophysical fluid dynamics

Syllabus:

Lecture 1 Introduction to Fluid Mechanics, Properties of Fluids and Statics
Lecture 2 Scalars, Vectors, Tensors; Gradient, Divergence, Curl; Stokes and Gauss Theorems
Lecture 3 Kinematics: Material derivative, streamline, streamfunction, strain rates
Lecture 4 Relative motion near a point, Vorticity and Circulation
Lecture 5 Conservation laws I: Mass, tracer, Advection-Diffusion Equation
Lecture 6 Conservation laws II: Momentum and the Navier-Stokes Equations
Lecture 7 Conservation laws III: Momentum and the Navier-Stokes Equations
Lecture 8-9 Conservation laws IV: Energy and Bernoulli equations
Lecture 10 Dynamic similarity
Lecture 11 Introduction to Geophysical FD: scales of motion, rotation/stratification in atmosphere and ocean
Lecture 12 Rotating frame of reference: Coriolis force, inertial oscillations, acceleration on a 3-D rotating planet
Lecture 13 Governing equations of GFD: momentum, mass conservation, energy, equation of state; Boussinesq approximation; scale analysis and further simplifications of governing equations; Rossby, Ekman, Reynolds numbers
Lecture 14 Geostrophy: geostrophic flows; Taylor-Proudman theorem; non-geostrophic flows; vorticity dynamics
Lecture 15 Friction and rotation: Ekman layers
Lecture 16-17 Barotropic waves: Kelvin, Poincaré, Rossby, topographic waves and analogies
Lecture 18 Stratification: static stability, Froude number, combination of rotation and stratification
Lecture 19 Mixing 1: mixing of stratified fluids, Kelvin-Helmoltz instability – Instability of a stratified shear flow
Lecture 20 Mixing 2: Taylor-Goldstein equation, Richardson number; turbulence in a stratified shear flow

Teaching methods: lectures/exercises
Assessment methods: written/oral examination
Other information: the course is delivered in English
Course: PHYSICS AND MODELLING OF TURBULENCE
SSD: ICAR/01
48 hours, 6 ECTS
Lecturer/s: V. Armenio

Aims: introduce students to turbulence.

Syllabus:

1. Introduction to turbulence
2. Statistical description of turbulence
3. Turbulent scales and Energy cascade
4. Equations of turbulent motion (mean momentum and Reynolds stresses transport equations)
5. Free-shear flows
6. Wall bounded turbulence
7. Numerical methods for turbulent flows (DNS and LES)
8. Analysis of complex turbulent fields

Teaching methods: lectures/exercises
Assessment methods: written/oral examination
Other information: the course is delivered in English
Course: STATISTICAL MACHINE LEARNING
SSD: INF/01
60 hours, 7 ECTS
Lecturer/s: L. Bortolussi

Aims: Introduce students to machine learning, with a probabilistic perspective.

Syllabus:

1. Introduction to statistical machine learning
2. Graphical models and exact inference
3. Approximate inference for models latent variables
4. Sampling methods
5. Bayesian linear regression and classification
6. Kernel based methods and Gaussian Processes

Teaching methods: lectures/hands on exercises.
Assessment methods: group project and oral presentation
Other information: the course is delivered in English. A basic knowledge of Python is helpful
Course: STOCHASTIC MODELLING AND SIMULATION
SSD: INF/01
60 hours, 7 ECTS
Lecturer/s: L. Bortolussi

Aims: Introduce students to stochastic models of population processes and to simulation algorithms and approximation techniques.

Syllabus:
2. Stochastic approximations: mean field, linear noise, moment closure, Langevin approximation, hybrid approximations.
3. Parameter estimation and system design.
4. Formalization and verification of emergent behavioural properties (if time).

Teaching methods: lectures/hands-on exercises.
Assessment methods: project and oral presentation
Other information: the course is delivered in English. A basic knowledge of Python is helpful.
Course: Population-Based Optimisation Methods
SSD: INF/01
16 hours, 2 ECTS
Lecturer/s: L. Manzoni

Aims: To introduce the students to evolutionary computation, swarm intelligence, and other population-based optimisation techniques,

Syllabus:
- Background on optimisation problems and single-state optimisation methods
- Genetic Algorithms
- Genetic Programming
- Linear GP, Cartesian GP, Grammatical Evolution
- Semantic Methods in Genetic Programming
- Evolution Strategies
- Differential Evolution
- Swarm Intelligence: Particle Swarm Optimisation and Ant Colony Optimisation
- Distributed models (islands, master/slave)
- Multi-objective optimisation
- Coevolution
- Runtime analysis and theory of evolutionary computation

Teaching methods: lectures
Assessment methods: project and oral presentation
Other information: the course is delivered in English. A basic programming knowledge is suggested.
Course: PYTHON: INTRODUCTORY COURSE
SSD: INF/01
24 hours, 3 ECTS
Lecturer/s: N. Spallanzani, M. Cestari

Aims: provide students with the fundamentals of Python

Syllabus: TBA

Teaching methods: TBA
Assessment methods: TBA
Other information: -
Course: R PROGRAMMING COURSE
SSD: INF/01
16 hours, 2 ECTS
Lecturer/s: G. Pedrazzi

Aims: provide students with the fundamentals of R

Syllabus: TBA

Teaching methods: TBA
Assessment methods: TBA
Other information: -
Course: ENGINEERING NUMERICAL ANALYSIS
SSD: ING-IND/34
30 hours 4 ECTS
Lecturer/s: G. Pedrizzetti

Aims: provide students with the fundamentals of numerical analysis for engineering

Syllabus:

1. Interpolation
2. Numerical Differentiation – Finite Differences
3. Numerical Integration

Teaching methods: lectures/exercises
Assessment methods: homeworks
Other information: the course is delivered in English
Course: AN INTRODUCTION TO FLUID MECHANICS FOR CARDIOVASCULAR ENGINEERING
SSD: ING-IND/34
48 hours, 6 ECTS
Lecturer/s: G. Pedrizzetti

Aims: provide students expertise on the fluid motion inside the heart and the large vessel, with particular reference to what may be the relevant for clinical evaluations.

Syllabus:

1. INTRODUCTORY ELEMENTS: Basic Concepts, overview of fluids and solids mechanics and Bio-flow Domains. Kinematics of fluid
2. FLUID DYNAMICS: CONSERVATION LAWS: Conservation of mass, of momentum and of energy and their applications to vessels, deformable chambers and transvalvular flows.
5. CARDIAC MECHANICS: Cardiac electro-mechanical cycle. Fluid dynamics inside the normal and pathologic left ventricle. Aortic valve. Mitral valve

Teaching methods: lectures/exercises
Assessment methods: homeworks
Other information: the course is delivered in English
Aims: The purpose of the course is to introduce the students to the rigorous analytic theory of the incompressible Navier Stokes Equation in Euclidean space and to show to the students the deep differences between the notion of PDE and of ODE. PDE’s are intrinsically more complex and in modern Mathematical Analysis are understood and treated through the framework of Functional Analysis. In particular, students of Mathematics will see in this course various application of ideas of Functional Analysis, like the notion of weak topology, that can be fully appreciated only when applied to concrete problems.

The course assumes some background in the theory of Banach spaces, Fourier transform, distributions, tempered distributions, which are taught in the master course Advanced Analysis by professors Zagatti and Del Santo.

Interested students who don’t have such a mathematical background shouldn’t be discouraged to attend the course, because to get a sense of what will be taught in the course it is not necessary to have rigorous understanding but rather an intuitive grasp of such background that the lecturer can provide to these students upon request. However, to fully benefit from this course, especially in view of an autonomous elaboration of the mathematical formalism of the NS or of other equations in their future research carrier, it is necessary that the students fill the background gaps.

Syllabus:

1. Some basics of Harmonic and Functional Analysis: Reisz’s interpolation theorem, the homogenous Sobolev spaces, boundedness properties of the Hardy Littlewood Maximal Function (in particular the Marcinkiewicz interpolation theorem), the Hardy Littlewood Sobolev fractional integration theorem, Sobolev’s embedding theorem for homogeneous Sobolev spaces and, time permitting, Calderno Zygmund kernels and their corresponding boundedness theory in L^p spaces.

3. Various fixed point theorems about the existence of mild solutions in dimension 3 and proof of the regularity of such solutions.

4. Serrin’s regularity criterion.

5. Notion of suitable solution and two local regularity criteria by Caffarelli, Kohn and Nirenberg.

Teaching methods: lectures
Assessment methods: oral examination
Other information: the course is delivered in English (in Italian if all the attendees are Italian)
Course: Partial Differential Equations in Quantum Physics
SSD: MAT/07
8 hours, 1 ECTS
Lecturer: I.M. Sigal

Aims: A review of equations related to the quantum many-body problem, describing origin, physical (and often geometrical) significance, properties and applications. Their origin is in the last fundamental equation of physics - the Schrödinger equation, describing quantum matter such as atoms, molecules, solids and ... stars. Soon after the Schrödinger equation was written it was realized that it is intractable beyond two particle systems and a search for effective approximations began. Some of them will be reviewed in these lectures. I will also review some recent results. The lectures will use only basic results from analysis and geometry and otherwise will be self-contained.

Syllabus:

2. A review of the Gross-Pitaevski (or nonlinear Schrödinger) equations.
3. A review of the Kohn-Sham equation (density functional theory)
5. A review of the Chern-Simons equations

Teaching methods: lectures
Assessment methods: oral examination
Other information: the course is delivered in English
Course: NUMERICAL METHODS I
SSD: MAT/08
30 hours (20 class lectures + 10 lab session), 4 ECTS
Lecturers: E. Coppola

Aims: introduce students to the basics of numerical analysis from the computational point of view

Syllabus:

1. Linux Operating System, Unix Commands, bash shell.
2. Fortran 90 programming: basic operations, input/output, flow control
3. Fortran 90 programming: functions/subroutines, array/matrices, strings, dynamic allocation, use of modules, notions of object oriented programming.
4. Roots of equations: Bisection, Newton, Secant and Regula Falsi methods.
5. Integration: trapezium and Simpson methods, Newton-Cotes formulas, Gaussian quadrature.
7. Random Numbers: linear congruent generators, statistical analysis of pseudo-random number generators, non-uniform distributions (transformation method, Box-Muller, rejection method).

Teaching methods: lectures/exercises
Assessment methods: written/oral examination
Other information: the course is delivered in English
Aims: introduce students to the numerical solutions of some classes of differential equations

Syllabus:

1. Introduction to Finite Differences and floating point representation.
4. The 1D linear advection equation: the upstream scheme. CFL condition.
5. The 1D Linear advection equation: the leapfrog scheme.
7. The 1D linear advection equation: the semi-Lagrangian technique.
8. The 1D linear advection equation: an implicit time discretization.
10. The 1D advection-diffusion equation.
11. The linearized 1D shallow water equations system: an explicit discretization.
12. Summary and review of selected topics.

Teaching methods: lectures/exercises
Assessment methods: written/oral examination
Other information: the course is delivered in English
Course: ADVANCED NUMERICAL ANALYSIS
SSD: MAT/08
48 hours, 6 ECTS
Lecturer: A. Martinez

Aims: introduce students to the numerical solution of partial differential equations

Syllabus:

The course will give an overview of practical algorithms for solving large-scale linear and nonlinear systems of equations arising from the discretization of partial differential equations in many application areas of computational engineering. The course will also provide an introduction to discretization methods for partial differential equations.

3. Algebraic preconditioners. Incomplete factorizations, sparse approximate inverse preconditioners.

Teaching methods: lectures/exercises
Assessment methods: oral examination
Other information: the course is delivered in English